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A general theory is presented which describes disturbances generated by large 
amplitude, high frequency pulses in stratified media. The theory is used to discuss 
large amplitude, but shockless, acoustic pulses propagating under the influence 
of a constant gravity force into an atmosphere which need not be in thermal 
equilibrium before their arrival. 

The modulating influences of pressure and temperature stratification on the 
amplitudes of such pulses as they move towards or away from earth are described 
in detail. 

The paper generalizes techniques already established by Whitham (1956) so 
that they are applicable to disturbances of any amplitude. 

1. Introduction 
In  this and subsequent papers a theory is presented which describes the 

propagation of large amplitude, high frequency waves in stratified media. This, 
the first paper, neglects all phenomena associated with the geometry of such 
waves. It deals with plane pulses in which conditions are governed by solu- 
tions u(t, X) = (ul, u2, . . ., un) to a system of hyperbolic equations which can be 
written in the form 

As an illustration of the theory, conditions in a large amplitude, non-isentropic, 
acoustic-gravity pulse, which may be moving towards or away from earth, are 
discussed in detail. The entropy variation in the pulse is caused by ambient 
thermal and density stratification before its arrival. 

Although equations such as (1.1) govern a wide variety of wave-like disturb- 
ances in stratified media, few results which have any general applicability are 
known. Even when (1.1) are formally linearized about some constant ambient 
state, u = 0 say, so that A is approximated by A,(X) = A(0, X), the only results 
of a general nature have been obtained in the geometrical acoustics limit. Then, 
the stratification, which results from the dependence of A, on X, is ‘slowly 
varying’ for the disturbance. If wo(X) is any eigenvalue of A,(X) and if 

u,X+A(u,X)u,,  = 0. (1.1) 

(1.2) 
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denotes the associated characteristic variable, then the linear equations have 
regular asymptotic expansions of the form 

m 

u = rmfm( / j )  fi,(cc, X) = 6 ( a ,  X: 7) say. (1.3) 
m=n 

In (1.3) the small parameter r is typically the ratio of a time scale introduced 
by the boundary data to a time scale defined by the stratification. The f, are 
functions of the fast characteristic variable 

p = a/r. (1.4) 

df,+l/dP =f, (m = 0,1 ,  ...). (1.5) 

They satisfy the recurrence relations 

The f i 3n (a ,X)  are functions of X and the slow characteristic variable a. They 
satisfy the recurrence relations 

(1.6) (A,(X)-w,(X) 1) (6m+l-6m,a) = - e , , x  (m, = 091, ... 1. 

In (1.5) the signal functionfo(/3) is arbitrary; in (1.6) 

6, = da, X )  ro(X), ( 1 . 7 )  

where ro(X) is any right eigenvector of An(X) corresponding to the eigenvalue 
w,(X). The scalar r(cc> X) satisfies the transport equation 

cr,,+K(X)cr = 0, (1.8) 

where R ( X )  is given in terms of r,(X) and any associated left eigenvector 

The solutions described by (1.2)-( 1.9) are directly applicable in regions where 
only one of the components of the disturbance, that associated with the family 
of characteristics given by a(t, X) = constant, is excited. They describe disturb- 
ances which are of high frequency in the sense that the signals carried by the 
progressing waves which generate them are sharp: the main effect of the stratifi- 
cation is to attenuate or amplify the waves rather than to distort, or disperse, 
them. For, according to (1-3), to a first approximation conditions at a station X 
at the arrival of the wavelet a = constant, which left X = 0 at  t = a, are deter- 
mined by conditions at X = 0 at t = a: and are independent of conditions at all 
precursor wavelets. The general aim of this study is to construct a theory which 
describes the dominant behaviours of large amplitude progressing waves in this 
high frequency limit. 

Of course expansions of the form (1.3) are out of the question for non-linear 
systems. However, there is an alternate interpretation of these expansions which 
immediately suggests a procedure for tackling the non-linear problem. The waves 
described by these expansions are examples of waves in which all the components 
of u are relatively undistorted. Quite loosely, the variables f(t, X )  = (fl,f2, . . .,fm) 
are relatively undistorted in a wave if at all ( t , X )  of interest there exists a 
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propagating surface a(t, X) = constant, called a wavelet, such that the magnitude 
of the rate of change of any of the fi (i = I, 2, . . .) m), moving with the wavelet is 
small compared with the magnitude of the rate of change offi at fixed t or X. 
The ui (i = 1 ,2 ,  ...) n), represented by (1.3)) with a given by (1.2), are relatively 
undistorted because, in the terminology introduced in (1.3), 

(1 .10)  

The definition of a relatively undistorted wave given above does not restrict the 
amplitude of the wave to be small. Evidence that there are such waves of any 
amplitude is furnished by the following observation. If A in (1 .1)  is independent 
of X then any progressing wave is a simple wave. In such a wave the components 
of u are invariant at a characteristic wavelet, a@, X) = constant, which moves 
with an invariant speed which is determined by the value of u it carries. Since 
u = U(a) ,  the q,x = 0 so that (1 .10)  is trivially satisfied no matter what the 
amplitude of the ui. If now the dependence of A on X is slowly varying for the 
wave then it is not unreasonable to suppose that in some vicinity of X = Y ,  for 
some time interval, a progressing wave can be locally approximated by a finite 
amplitude simple wave with A(u,X) in (1 .1)  replaced by A(u, Y ) .  The basic 
problem then reduces to determining how these local simple wave solutions 
should be enveloped to obtain a global statement for conditions in a progressing 
wave. Our theory is based on the implications of the relatively undistorted 
approximation (1.10). In  the second paper a formal justification of the theory 
is described. This results by regarding the waves as slowly modulated simple 
waves with slowly changing Riemann invariants. In  this paper we present a more 
heuristic approach and obtain the basic results with a minimum of effort. 

In  $ 2  it is shown that at  any X where (1 .10)  holds, to a f is t  approximation, 
the relations between the ui, and the u, are identical to those in a simple wave 
and that the wavelets a(t, X) = constant are necessarily characteristic wavelets. 
Although these relations are identical for all high frequency progressing waves 
associated with this same family of characteristic wavelets, in general they 
cannot be formally integrated to obtain relations between the ui which are 
uniformly valid for all t .  The error term, although locally small, can have a cumu- 
lative effect. However, this paper is concerned with pulses. A pulse is that part 
of the wave which arrives and passes a point X before the error term in the formal 
integration of these approximate simple wave relations between the ui, can 
produce a first-order effect in the relations between tlp ui. In  the expansions (1 .3)  
this amounts to approximating the ?Jm(a, X )  by U,(O, X); in the modulated 
simple wave approach it amounts to taking the Riemann invariants as functions 
of X only. Although the time duration of the pulse at any X is restricted, no 
restriction is placed on the distance travelled by the pulse (except an implicit one 
that the cumulative effect of frequency dispersion has not produced a first-order 
effect). Formulae are obtained which describe the modulating effect of stratifica- 
tion on both the amplitude and distortion of pulses. 

In $5  3-5 the theory established in $ 2  is used to determine conditions in a large 
amplitude, but shockless, pulse moving under gravity towards or away from 
earth. Before the arrival of the pulse the atmosphere is in mechanical equilibrium 

33-7. 
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with the pressure varying linearly as a function of a Lagrangian distance measure. 
It need not be in thermal equilibrium. The gas flow which is generated is taken 
to be inviscid and adiabatic. However, because of the ambient stratification, the 
flow is not isentropic. Two limiting cases are discussed in detail: the limit when 
the effect of density stratification induced by gravity dominates the effect of 
thermal stratification, and conversely. In both limits the flow variables can only 
be expressed as explicit functions of the characteristic variable a and the 
Lagrangian distance measure +. Both the formation of shocks in compression 
pulses and the formation of fully amplitude dispersed regions, where details of 
the signal which generated the pulse are forgotten, are described in detail. It is 
hoped that the results are applicable to the final stages of an intense atmospheric 
explosion where the modulating effects of ambient stratification dominate that 
due to radial spread of the disturbance. 

In $ 6  we return to the general theory of pulse propagation and show that the 
theory predicts the exact variation of the acceleration at any front which is 
moving into a uniform region. Although a knowledge of conditions at  such a front 
are of limited applicability, it is exact. Moreover, it introduces in a natural way 
the various length and acceleration scales which are important in pulses where, 
although the amplitude is small, non-linear effects may be important. Conditions 
at  such a front are used to discuss the precise conditions under which non- 
linearity and stratification may be neglected. 

The theory described in this and subsequent papers is an extension of the 
earlier, fundamental work of Whitham (1953, 1956). He showed how the pulse 
approximation to (1.3) should be modified to account for the cumulative effect 
of locally small non-linearity. This work generalizes his results to waves of any 
amplitude. 

2. Progressing pulses : heuristic approach 
We consider high frequency progressing pulses in stratified media whose 

responses are described by solutions u(t, X )  = (ul, u2, . . ., un) to hyperbolic 
equations which can be written 

Of special interest is when equations (2.1) describe conservation laws and the 
elements of A can be written 

for some vector a(u, X). 

u,,+A(u,X)u,t = 0. (2.1) 

A = a,u (2.2) 

e , x  + Be, = C, (2.3) 

If equations of the dispersive form 

where B and C are functions of (e, X ) ,  have static, or low frequency, solutions 
in the region X 
of the form (2.1). For if 

0 then, in this region, they too can be replaced by equations 

e = d(X,u) (2.4) 

is any solution to the ordinary differential equations 
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which satisfies the initial conditions that 

d = u  a t  X=O,  (2.6) 

then u( t ,  X) satisfies (2.1) with 
A = (d,u)-lBd,u. 

High-frequency progressing pulses are examples of waves in which the state 
variables (ul, u2, .. ., u,) are relatively undistorted with respect to t. Quite loosely, 
the variables (fl, f2, . . ., fm), m 2 2, are relatively undistorted in a wave with 
respect to t if a t  all ( t , X )  of interest there exists a propagating surface 
a ( t , X )  = constant, called a wavelet, such that the magnitude of the rate of 
change of any fi (i = 1,2,  ..., m), moving with the wavelet is small compared 
with the magnitude of the rate of change of fi at fixed t. If t = T(a, X) denotes 
the arrival time of the wavelet a at X, and if 

F ( a ,  X )  Ef f(t, X) (2.8) 

then 14,xI < Ifi,Xl (i = 122, ...,m 1. (2.9) 

Since, however, F , x  = f , x + T , x f , t  (2.10) 

f , x  -T,xf , t  (2.11) 

and 1 4 , X l  < p,xl@i,t1 (i = L % - - - , m ) .  (2.12) 

in a relatively undistorted wave 

In particular, if u = (ul, u2, . . ., un) are relatively undistorted then, since 

( A - T , x W , t  = - U , m  (2.13) 

the slowness T, of the wavelets must be an eigenvalue of A(U, X). This, in turn, 
implies that the wavelets are characteristic surfaces. Otherwise, (2.13) would 
completely determine the ui , as linear forms in the q, and (2.12) could not 
hold; only on characteristic surfaces are the normal derivatives of the ui not 
uniquely determined by the Ui and their tangential derivatives U, , x. Accordingly, 
in such waves 

T,x = W(U, XI, (2.14) 

(2.15) where 

and consequently, by (2.13), U must satisfy the compatibility conditions 

det IA(u, X )  - w(u, X )  11 = 0, 

l (U,X).U, ,  = 0 (2.16) 

for every left eigenvector l(u,X) of A(u,X) corresponding to the eigenvalue 
w(u, X). In  terms of u = U(a, X )  and the incremental arrival time of wavelets 

= T.a> (2.17) 

equations (2.13) read (A-wl)U,,  = - QU,,, (2.18) 

while differentiating (2.14) with respect to a and using (2.17) yields 

Q,x = w,ll!u:x).u,,. (2.19) 
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Equations (2.16), (2.18) and (2.19), with w determined from (2.15), govern the 
exact variations of U(a ,  X )  and M(a,  X). In  a relatively undistorted wave, to  
a first approximation, (2.18) is replaced by 

(A-wl)U, ,  = 0. (2.20) 

We restrict attention to waves for which w is a simple root of the characteristic 
condition (2.15). Then, if r(u,X) is any right eigenvector of A(u,X) corre- 
sponding to the eigenvalue w(u,X), conditions (2.20) imply that to a first 
approximation U, a is proportional to r, or that 

U , E  = P,.r(U,X) (2.21) 

for some scalar P(a, X ) .  Equations (2.21) relate the current rates of change of all 
components of u at any X to the current rate of change of any one component 
and the current value of u. They are approximate relations and cannot, in 
general, be formally integrated to obtain relations, which are uniformly valid 
for all timo, between the current values of u at X .  The error term, although 
locally small, has a cumulative effect in time which ultimately produces a first- 
order contribution to the variation in u. There are two important exceptions 
when the effect of the error is not significant. The first, which will be discussed 
in a future paper, is when the wave generates high frequency time periodic dis- 
turbances. Then, by a suitable choice of the constants of integration for (2.21), 
the error term can be shown to have zero mean value at  any X so that it produces 
no cumulative effect. The second exceptional case, which we discuss here, is 
when the wave is a pulse which arrives and passes X over a time interval which 
is not long enough for the error term to produce a significant effect. 

To a jirst approximation, conditions in a pulse can be determined by solving 
ordinary differential equations; for the ordinary differential relations (2.21), 
which hold at  all X ,  can be formally integrated, subject to suitable initial 
conditions, to determine 

where, according to (2.21), V,, = r(V, X ) .  (2.23) 

Equation (2.16) then provides an ordinary differential equation, the non-linear 
transport equation, for the variation of E' at each a = constant wavelet. In fact. 
(2.16) and (2.23) imply that 

where B ( F ,  X )  = 1(V, X).V, x/l(V, X).r(V,X).  (2.25) 

Once V ( F , X )  has been determined from (2.23), and P(a ,X)  from (2.24), 
u = U(a,  X) is known and can be inserted in (2.14) to determine t = T(a,  X ) .  
Consequently, implicit statements to determine u(t, X )  can be obtained. If 

(2.22) u = V ( F , X ) ,  

F,,+D(F,X) = 0, (2.24) 

f(t, X )  ,zf P(a, X), (2.26) 

then (2.12), with f = u, together with (2.22)-(2.25) imply that a necessary condi- 
tion that the pulse is relatively undistorted for all of the ui is that f ( t ,  X )  satisfies 
the high frequency conditions 

(2.27) 
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Since the input signal f ( t ,  0) can be specified, conditions (2.27) can always be 
satisfied a t  X = 0 (and ‘by continuity’ in some neighbourhood of X = 0). 

As an illustration consider a pulse with a front a = 0 moving with sound speed 
into a region where, before the arrival of the pulse, the disturbance is known. 
Then, since u is continuous at a sound front, U(0, X ) ,  which satisfies the ordinary 
differential relations (2.16)) is known, and since F(a,  X) can be normalized so that 

F ( 0 , X )  = 0, (2.28) 

equations (2.23) can be solved subject to the initial conditions 

V(0,X) = U(0,X). (2.29) 

If the wavelet a = constant is tagged by the time t = a when it passed X = 0, 

so that T(a, 0) = a, (2.30) 

then (2.24) determines F(a,  X )  once the signal function 

F(a,  0) = n(a) (2.31) 

has been specified. Equation (2.14) can then be solved, subject to (2.30)) to give 
t = T(a, X)-the arrival time a t  X of the wavelet a which left X = 0 at t = a. 
Note that in such a pulse, moving in a direction of increasing X ,  conditions at  
any station X > 0 at the passage of the wavelet a, are, to a first approximation, 
determined by the disturbance ahead of the pulse which, essentially, induces a 
stratification for the pulse, and by conditions at  the passage of a, at any other 
previous station, X = 0 say. They are independent of conditions at  all precursor 
wavelets 0 < a < a,. In  this sense, the characteristic wavelets are the carriers of 
information in a high-frequency pulse. 

A more formal justification of the theory will be given elsewhere. Here, to 
illustrate its use, we apply it to two problems which involve large-amplitude 
non-isentropic but shockless flows of an inviscid gas. 

3. Adiabatic, non-isentropic flows of an ideal gas 
We consider the uni-directional flow of an inviscid gas under the action of 

a constant body force, - g,  per unit mass. Let p and i j  be any constants with the 
dimensions of pressure and density. Let pp(t, $), (p/ij)*u(t, $) and (p/p)h (p ,  E )  
denote the pressure, fluid speed, and enthalpy at  time @/j$ t lq at the particle ‘ $’ 
which if the gas were brought to equilibrium at constant pressure and constant 
density i j  would be at  a distance ( P / p g )  $ from the particle $ = 0. Then, if E($)  
denotes the entropy at  the particle $, t,he equations governing uni-directional 
adiabatic flow are of the form (2.1) and (2.2) with 

u = (  
), and a=( - h , P  ). 

P+@ 
The density pp and temperature measure 0 are given by 

The current co-ordinate x(t, $) of the particle q9 satisfies the condition that 
p - l = h , ,  and 0 = - h , , .  (3.2) 

x Z t = u  and x ,@=p- l .  (3.3) 
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Equations (2.1) and (2.2), with u and a given by (3.1), are the Lagrangian 
statements for the changes in density and linear momentum at a particle. 

We consider a pulse behind a sound front a(t, $) = 0 which is moving into 
a region where, prior to its arrival, the gas is at rest in mechanical equilibrium 
with 

The gas ahead of the pulse need not, however, be in thermal equilibrium. If at  
the arrival of the front of the pulse the entropy at  the particle $ is E($) then, 
according to (3.2), po($) and So($) at the arrival of the pulse are given in terms 
of E($)  and Y($)  by 

u = O  and p =  l - $ , =  Y say. (3.4) 

P o  --I - - h ,P ( Y , E )  and 0, = -h,E(Y, .E) .  (3.5) 

In the pulse it is assumed that the mechanical power generated by the density 
variation is so large compared with the power generated by any other source, 
such as heat flux, that over the time it takes the pulse t o  pass any particle $ the 
flow is adiabatic. 

In  (3.4), and in what follows, we take jj and p to be the pressure and density 
before the arrival of the pulse a t  the reference particle $ = 0. We also measure E 
so that 

E(0)  = 0. ( 3 4  

P = P(a, $). (3.7) 

The (normalized) pressure p is taken as the signal function, so that 

and 

where 

$1 
u = (  P ) 7  

P 

u = U(P, 9) E w(s, $)as. 
!I-$ 

(3.9) 

(3.10) 

When (3.7)-(3.10) are inserted, the transport equation (2.24) for P(a, $) reads 

p ,  $ + D(P, $1 = 0, (3.11) 

where (3.12) 

For an ideal gas 

h = - Y p(Y--W exp and = Y-1 -- h. (3.13) 
Y Y - 1  

When (3.13) is inserted, conditions (3.8)-(3.10) yield 

and (3.15) 

(3.16) 
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where Y = 1 - $ and Oo( Y )  are the pressure and temperature at the front of the 
pulse. The transport equation (3.11) simplifies if ( Y ,  a) ,  rather than (@,a), are 
used as independent variables and if 

Z(Y,a)  = P/Y, (3.17) 

rather than P ,  is used as dependent variable. In  terms of these variables equa- 
tions (3.11) and (3.16) yield the equation 

(3.18) 

for the determination of Z( Y ,  a). In  terms of ( Y ,  a)  the equation for the arrival 
time (2.14), with w given by (3.14), reads 

(3.19) 

If the wavelet a = constant is tagged so that it 
& $ = O  p = 1 +r(t), 

then, (3.18) and (3.19) must be solved subject to 

and Y = 1: Z E l+r (a ) ,  

passes $ = 0 at t = a, and if 

(3.20) 

the conditions when 

T = a. (3.21) 

4. Isothermal atmosphere 

arrival of the pulse 

and (3.3) integrates to give 

According to (4.2) the equilibrium density po varies exponentially in distance.? 
Note that when the pulse moves into a region where 0 < @ 6 1, (g > 0), which 
corresponds to 0 < x < co, the equilibrium density po and pressure Y are 
decreasing. In  particular, at the ‘edge of the atmosphere’ 

For the special case when the atmosphere is in thermal equilibrium before the 

(4.1) 

( 4 4  

eo = 1, 

p - I - $  = y = e-”. 
0 -  

x =  co, @ =  1, and p o =  Y = 0. (4.3) 

When the pulse moves into a region where ~ 6 0, (9 < 0) ,  which corresponds to 
x < 0, the equilibrium density and pressure increase without bound. 

When 6, = 1, equations (3.18) and (3.19) are easily integrated, subject to  
(3.20) and (3.21), to  give 

and 

where 

p /Y  = 2 = [l +n(a) Y-*] 
yt(t  - a)  +In Y = G[r(a )  Y-$1- G[r(a)], 

(4.4) 

(4.5) 

(4.6) G ( y )  = 2 j“ s-l[( 1 + S ) - ( ~ + ~ ) / ~ Y  - 11 ds. 
0 

t The distance scale has been normalized so that the scale height 

A = PlFg 

is one unit. At the earth’s surface 1111 is of the order of 8.5km. The unit of time is of the 
order of 35 see. 
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In terms of the local temperature 
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/j = z(Y-l) /ZY,  

the fluid speed 

and the local Mach number 

If the local frequency of the pulse at the particle $( = 1 - Y )  is defined as 

and the natural frequency of the gas by 
( j jN = Z(Y+1)/2Y, 

(4.9) 

(4.10) 

(4.11) 

then, the high frequency conditions (2.27) are satisfied and the approximation 
valid (at least up to the time when a shock passes) if 

0, > U N .  (4.12) 

According to (4.4)-(4.6) at any particle 

& = n'(a) ym-1, (4.13) 

where the incremental arrival time 

Q = 1 + 2y-3n'(a) cD(n(a), Y )  (4.14) 

with @(n, y )  = +[(1 + n . Y - - 9 ) - - ( Y + W Y -  (1 +n) - (Y+1) /2Y] ,  (4.15) 

In  particular, after the passage of the front a = 0, at which according to (4.5) 

ytt +In Y = y t t  - x = 0, (4.16) and (4.2) 

(4.13)-(4.15) predict that 

p , t  = n'(0) Ya[l-,-qy+l)n'(o)(Y-t-1)]-1, (4.17) 

(4.18) 

The result (4.18) is exactly the answer which is predicted by the general theory 
of acceleration fronts (Varley & Cumberbatch 1965). At such a front w L  is 
unbounded so that condition (4.12) is trivially satisfied. (In 3 6 we show that our 
pulse theory is aZwuys exact at such a front.) Since conditions at  an acceleration 
front are, in many ways, typical of conditions in a small-amplitude high- 
frequency pulse, we give a brief account of the predictions of (4.18). 

At a front which is moving in a direction of decreasing equilibrium pressure 
(increasing x and t ) ,  equation (4.18) predicts that P , ~  will always uZtimateZy 

= ~ ' ( 0 )  e-z'"[1- y A ( y  + 1) n'(0) (e4" - 1)I-l. 

increase without bound if, as it passes x = 0, 

p , t  = n'(0) > 0. 

However, p ,t is currently increasing at the front 

YB . 
P . t  ' r+l' 

(4.19) 

as it passes x = 0 only if 

(4.20) 
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or, in terms of dimensional (starred) variables, p* , t. is increasing at  the front 
as it passes a station where the pressure is p* only if 

(4.21) 

where A is the scale height. If condition (4.19) is satisfied, ultimately p , becomes 
unbounded and a shock? forms at  

If, as the front passes x = 0, 

then, as x -+ 00, 

P , t  = n'(0) 0, 

(4.22) 

(4.23) 

so that the asymptotic decay in p ,  is independent of its value, n'(O), at any 
previous station although, of course, the rate of approach to this asymptotic 
decay law does depend on n'(0). 

At a front which is moving in a direction of increasing equilibrium pressure 
(decreasing x and t )  even though Ip , t l  will always increase without bound as 
1x1 +GO, a shock will form (a+ 0) only if at  x = 0 

which in terms of dimensional variables reads 

(4.25) 

(4.26) 

Equations (4.4) and (4.7)-(4.9) express the flow variables p ,  8, u and M as 
functions of the parameters (a,  Y) .  Equation (4.5) gives t as a function of these 
parameters. It remains to determine 

x = X ( a ,  Y ) .  (4.27) 

To do this we integrate the equation 

x,a = U f i ( x , ,  = u) 

subject to the initial condition that when 

a =  0, X=-1nY. 
This yields 

(4.28) 

(4.29) 

t The effect of shocks on the flow will be described in a subsequent paper. 
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4.1. Small amplitude limit 

In1 < 1 and InY-41 < 1, 

In  the sma,ll amplitude limit where both 

the pressure variation is given parametrically by (4.4) as 

p = Y[l+n(a) Y-41, 

where, according to (4.5) and (4.30), to a first approximation 

yB(t-a)+In Y = -----n(a)(Y-~--1) Y f l  
Y 

1 yP(x+In Y )  = Y-3 n(s)ds-&y+ 1)y-W(a)(Y+- 1) 

Y-1 8 = l+-n(a) Y-k 
2Y 

u = y-&n(a) Y-4. 

I l o a  and 

The temperature 

and the fluid speed 

(4.31) 

(4.32) 

(4.33) 

(4.34) 

(4.35) 

(4.36) 

The high-frequency condition (4.12) requires that the incremental rate of change 

In particular, at Y = 1, where p = l+n(t), (4.38) 

(4.38) requires that the pulse is of high frequency in the sense that 

(4.39) 

The classical linear ray theory of geometrical optics neglects the cumulative 
effects of locally small non-linearity. The dominant approximation of that theory 
is obtained by formally replacing the right-hand sides of (4.33) and (4.34) by 
zeros. This theory then yields the explicit expressions 

p = e-z[1 +n(t---+x)eWj, (4.40) 

(4.41) 

and u = y-in(t - y-4%) eQ (4.42) 

for the flow variables. This theory is valid if, in addition to conditions (4.31) and 
(4.37) the small rate condition 

(Y+l)y-QIn’(a)(Y-4-1)1 < 1 (4.43) 

is also satisfied. The corrections to (4.40)-(4.42), given by (4.31)-(4.36), which 
must be made when (4.43) is not satisfied could also be obtained by using 
Whitham’s (1956) rule. 

The results (4.31)-(4.36) can also readily be obtained by a more formal pro- 
cedure. If the duration of the pulse at  Y = 1 is (jfj/p)k 7/1ql and if the flow variables 

u = (  P - y  ” )  (4.44) 
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are regarded as functions of Y and the fast characteristic variable 

B = ah, (4.45) 

then equations (2.1) and (2.2) with u and a given by (3.1) have formal asymptotic 
solutions for which 

u = W o ( P ,  Y )  + .U,(P, Y )  + - * . I ,  (4.46) 

while 

and 
y*(t - a) +In Y = T[T~(P ,  Y) + TT~(P, Y )  + . . .] (4.47) 

yg(x + In Y )  = T~[X, , (P ,  Y )  + TX1(P, Y )  + . . .]. (4.48) 

If 7w = .no(P), 
then, according to (4.31)-(4.32) 

(4.49) 

(4.50) 

(4.51) 

and x, = Y-i[j)ro(/3)dB-&+ l)y-br:(p)(Y-*- l)]. (4.52) 

The high-frequency condition (4.37) is satisfied because as r -+ 0 the left-hand 
side is O(7-l) while the right-hand side is O( 1). 

As an acoustic pulse moves away from earth towards the edge of the 
atmosphere (Y  -+ 0)  the small amplitude description (4-31)-(4.36) is only valid 
at those particles which have not been traversed by strong shocks and at  those 
wavelets where n=o(Y*) as Y + o .  

If the sound front is a compression front, so that 7r increases for some time after 
the passage of the front, the time interval at any Y after the passage of the front 
over which the flow is shockless and of small amplitude decreases with Y until, at  

T - _ -  Y +  7r0(P) ( Y t -  1) 
Y 

while 0 -  

(4.53) 

(4.54) 

at some instant, a shock forms. If the sound front is an expansion front, then the 
interval over which the flow is of small amplitude will still, ultimately, decrease 
as Y -+ 0. According to (4.33) and (4.44) over this time interval at3 

and 

while u3-- 7) (y4t-x). 
Y+l 

(4.55) 

(4.56) 

(4.57) 

Note that, asymptotically, the flow in the expansion region is independent of the 
detailed flow at Y = 1. At any x, the flow is only given by (4.56) and (4.57) until 
the arrival of a shock. 

As an acoustic pulse moves towards the earth in a direction of increasing 
ambient pressure and density ( Y -+ co, [x, t] + - 00) the amplitude of the  flow at 
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any wavelet decays like e-1"' and, according to (4.37) the high-frequency approxi- 
mation becomes more accurate. The level of the pressure rate will increase in the 
pulse only if a t  any particle it is large in the sense (4.21). Then, it will increase 
with 1x1 until shocks form. Such shocks remain weak and can readily be analyzed 
by using weak shock theory, (see Varley & Cumberbatch 1966). Their main 
effect is t o  attenuate the disturbance faster than e+l. If 

or, in terms of dimensional variables, if a t  Y = 1 

(4.58) 

(4.59) 

then according to (4.31)-(4.36) the linear theory gives a uniformly valid approxi- 
mation to conditions in the pulse for all Y > 1. If 

then asymptotically as Y + CO, between shocks, 

(4.60) 

(4.61) 

where to is constant between any two neighbouring shocks and where 

7r(t0) = 0. (4.62) 

According to (4.61), (4.32), (4.35) and (4.36) the asymptotic decay inp, 8 and u 
when (4.60) holds is independent of the detailed flow at Y = 1 : the flow is fully 
amplitude dispersed. 

4.2. Large amplitude limit 

In (4.4)-(4.12) the signal function 7r can vary in the range 

- 1  < 7r 6 co. (4.63) 

If we define 7(t )  = +( t )  [l +7r(t)]"/+1)/2r/27r'(t) (4.64) 

= y q p -  1)p(Y+1)/2Y/2p,t at Y = 1 (4.65) 

then the high-frequency condition (4.12) at Y = 1 requires thut 

(7(t)l < 1. (4.66) 

Since any level of7r in the range (4.63) can be attained in an arbitrarily small time 
without violating condition (4.66) all admissible levels of the flow variables can, 
in theory, be attained at  Y = 1 without violating the high-frequency condition. 

4.2.1. Compression pulse. In  a compression pulse, whether it is moving towards 
or away from earth, the incremental arrival time 

(4.67) 
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decreases at  a wavelet. As the compression pulse steepens Sz + 0 and the high- 
frequency approximation becomes more accurate until a shock forms. The limit 
curve, at which 

Q(a, Y )  = 0, (4.68) 

forms part of the curve which bounds the region of validity of a theory which 
neglects shocks. If a compression wavelet a, has not already coalesced into an 
existing shock before reaching Y = Yo, where Q(ao,Yo) = 0, then at  Yo a t  the 
passage of the wavelet a. the fluid acceleration is unbounded and a shock begins 
to form. When terms which are O( 171 ) are neglected (compared with unity) the 
curve along which (4.68) holds is given by 

(4.69) 

Between Y = 1 and the limit curve (4.68) the only restriction on the variations 
of (n, Y )  is that 

(4.70) 

In the small amplitude limit where 7r = 0(7), (4.70) does not restrict the variation 
of Y. Since, according to (4.4) 

P n 
Y - = z =  ( l+n)  l+ - (T-44) ]  [ l + n  

(4.71) 

to a first and second approximation if terms which are O ( T ~ )  are neglected 

and 

(4.72) 

(4.73) 

To a first approximation the arrival time t(a, Y) is given by 

y t ( t - a ) + h  Y = 2([1+7r(a)]-(~+l) /2~-l)(Y-~-l) ,  (4.74) 

while x+ln Y = xl(a)+d(7r(a)) (Y-4- I) ,  (4.75) 

where 
2y4 t 

Y-1 0 
x = q ( t )  = - 1 ([l +n(s)](r-l)/2Y- 1)ds 

is the trajectory of the particle Y = I($ = 0) and 

d ( n )  = - 2  l+-(l+n)-(r+4~y-~~(l+~)-l,y]~ 2 

[ Y-1 Y-1 

(4.76) 

(4.77) 

To a first approximation the terms in the square brackets in (4.71) and (4.72) may 
be replaced by unity so that 0 and u are invariant at a characteristic wavelet, as 
they would be in a simple wave. However, the trajectory of the characteristic 
wavelet is not, in general, that of a characteristic wavelet in a simple wave. In 
much the same way that the effect of locally small amplitude dispersion may 
accumulate and produce a first-order contribution in the calculation of the flow, 
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the effect of locally small stratification may also produce a first-order contribu- 
tion in the calculation of the flow. Only when 

I @ ]  < 1 9  (4.78) 

that is only over distances which are small compared with the scale height A, 
can (4.74) and (4.75) be approximated by 

and 

(4.79) 

(4.80) 

-the exact representation of the flow in the absence of a body force and the 
stratification it induces. 

4.2.2. Expansionpulse. In an expansion pulse Q increases at  a wavelet whether 
it is moving towards or away from earth. Conditions in such a pulse may be more 
complex than in a compression pulse. For, whereas in a compression pulse the 
high-frequency approximation improves as the wave steepens, until shocks form, 
in an expansion pulse the approximation may worsen until it is invalid. Then the 
effects of ‘reflected waves’ must be taken into account. For example, consider 
an expansion pulse, in which 

- l < n < O  and 0 < 7 - < 1 ,  (4.81) 

moving away from the earth. Then, according to (4.10)-(4.12) and (4.67), the 
high-frequency approximation is valid and the effect of reflected waves is 

(4.82) 

Since, according to (4.67), at any wavelet at  which (4.81) hold Q- 1 increases 
from zero at Y = 1 to an infinite value at Y = n2, where the pulse is fully 
expanded, the inequality (4.82) must a t  some stage be violated and the effect of 
reflected waves must become important. 

The situation is well illustrated by considering conditions in that part of an 
expansion pulse which is moving away from earth, where the amplitude of 

(4.83) 

is small compared with unity. Note that this region, where 

0 < -Ap  < 1, (4.84) 

contains the small amplitude region neighbouring the front as well as a region 
neighbouring Y = 1 where n- can vary in its full range - 1 < n- < 0. If terms 
which are O(Ap) are neglected compared with unity, then 

and the high frequency condition (4.82) requires that 

(4.85) 

O < Z 1 7 - = 7 - - L A p < l .  + 1  

2Y 
(4.86) 
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In regions where (4.84) and (4.86) hold, the flow is again described to a good 
approximation by (4.71)-(4.77). At any Y, A p  and 71 decrease as t increases and 
the time interval, measured from the arrival of the pulse, over which (4.84) and 
(4.86) are valid decreases as Y decreases. In  fact, as Y --f 0 this time interval is 
arbitrarily small. 

4.2.3. Centred expansion fans. Now, although the pulse approximation may 
worsen at  any Y as t increases, in many situations before the approximation 
becomes invalid either a shock arrives or the flow becomes fully amplitude 
dispersed. In  any fully dispersed region, to a first approximation, the flow is 
independent of the details of the flow at any previous time; only some gross 
features are remembered. This phenomena is a generalization of that which exists 
in an expansion simple wave when in the far field, away from the source of the 
disturbance, the flow approximates that produced by a centred expansion fan. 
In  the region where (4.84) holds the flow is fully amplitude dispersed when the 
expression (4.85) for i2 can be approximated by 

(4.87) 

That is when l $ - A p $ -  2Y r. (4.88) 
Y f l  

To describe the pattern of the fully dispersed regions it is convenient to work with 

h = 2[(1 +71)-(r+l)lzy- I] ,  = A(a), (4.89) 

rather than n, and to  write (4.74) as 

(Y-*-l)h = y+(t-a)+lnY. (4.90) 

Then, according to (4.64), (4.83) and (4.88)) in the fully dispersed region 

y-BA’(a) (Y-4- 1) > 1. (4.91) 

These regions first form at wavelets a,, a2, ..., aN, ... where N ( a )  (>  0 )  has a 
local maximum. If YN is the least value of Y at  which, to the accuracy required, 
the right-hand side of (4.91) is negligible compared with y-BA’(aN) (Y$ - 1) then 
a fully dispersed region begins to form at the wavelet a, at the point (tN,YN), 
where tN is given in terms of aN and YN by (4.90) with h = A(aN). This region, 
which is centred at (tN,YN), begins to spread out around the wavelet a,. The 
first approximation A, to  h in this region is given by 

(Y-4- l )h ,  = y3(t-aN)+ln Y. (4.92) 

The second approximation A, is given by 

(Y-*-l)h,  = y*(t-a,-Aa)+lnY, (4.93) 

where, according to (4.89) 

If Aa is eliminated, (4.93) and (4.94) imply that 

A a  = [A, - A(~N)]/A’(EN). (4.94) 
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Higher-order approximations to h can be obtained by an obvious generalization 
of the scheme already applied to (4.89) and (4.90) to obtain A, and A,. Note that 
A, and A, are obtained as explicit functions of ( t ,  Y ) .  (The definitions of ( tN,  YN) 
can be made more precise by defining Y, as the least value of Y for which the 
indicated iteration scheme converges.) The flow described by (4.92) is a generali- 
zation of that produced by a centred simple wave. To see this suppose that at  

Time 

FIGURE 1. Pressure variations induced at particles by an acoustic expansion 
pulse moving away from earth. 

Time 

FIGURE 2. Particle displacements in same acoustic pulse moving away from earth. 
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Y = 1 at t = 0 the flow is discontinuously expanded so that A'(0) is unbounded. 
Then, a fully dispersed region centred at  ( Y ,  t )  = (1,O) forms. In  this region, to 
a first approximation, (4.92) implies that 

h = (y4t+ln Y ) / (  Y-4- 1). (4.96) 

If Y = I-$,  then, for I$[ < 1, (4.96)) (4.90) and (4.32) imply that 

(4.97) 

which is the exact expression for p in a centred simple wave. It should be noted 
that (4.96) is not an exact solution of the governing equations, but only the pulse 
approximation t o  a solution. 

4.3. Illustrations 

As an illustration of the results described in $4,  in figures 1-4 we depict the 
pressure variations and displacements induced at  several particles by an acoustic 
expansion pulse as it propagates into an isothermal atmosphere. At the reference 
particle Y = I, where prior to the arrival of the pulse the pressure is ji and the 
density is p ,  the pressure is taken to decrease at a constant rate. Only that part 
of the pulse is represented where conditions are determined by what was 
happening at Y = 1 over the time interval 

7 = 0-05(g/p)a lgl-l, (4.98) 

when the pressure changed from ji to @. 
Two cases are considered. Figures 1 and 2 depict conditions at a pulse moving 

away from earth into a region of decreasing pressure. If  d[p/j?Igl] denotes the 
distance measured from the initial position of the reference particle Y = 1, 
before the arrival of the pulse the pressure 

pA = pe-d. (4.99) 

Figure 1 shows the variation in incremental pressure at  several particles as a 
function of time measured from the arrival of the pulse. The particles are labelled 
by their distances d [ p / p  Igl] before the arrival of the pulse. Figure 2 shows the 
displacement of these particles. The time is measured in units of 7. The particle 
displacements are measured in units of the total displacement of the reference 
particle Y = 1 which is 

- 
D = 0.001 7. P 

P lgl 
(4.100) 

Figures 3 and 4 depict analogous conditions at a pulse moving towards the 
earth into a region of increasing pressure. Here 

PA = Fed,  (4.101) 

while 7 and D are still given by (4.98) and (4.100). 
34-2 
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I 
ri 

Time 

FIUUR.E 3. Pressure variations induced at particles by an acoustic expansion 
pulse moving towards earth. 

0 1 2 3 

Time 

4 

FIGURE 4. Particle displacements in same acoustic pulse moving towards earth. 
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5. Thermally stratified atmosphere 
When the gas is not in thermal equilibrium at the arrival of the pulse and 

when the stratification due to thermal gradients dominates that due to body 
force the transport equation (3.18) can be approximated by 

This integrates to give 

where ??(a) = [1+7r(a)](Y-l) /Zy-  1. 

z = P = [l +%(a) 8G%l2y/(y-'), 

According to (5.2) and (3.13)-(3.16) the temperature variation 

8 = 8,[1 +??(a) 8,-*], 

2Yi - a u = -7r(a)8,. 

(5.4) 

(5.5) and the fluid velocity 
Y-1 

In  (5.1)-(5.5) the ambient temperature variation 8,( Y )  is arbitrary, it is related 
to the ambient density variation po( Y )  by the ideal gas relation 

Y = p0Bo. (5.6) 

To interpret %(a) note that according to (5.4) at Y = 1, where 8, = 1 a.nd a = t ,  
the temperature variation is given by 

e = 1 + q t ) .  (5.7) 

If the pulse is not affected by a body force, (5.1) is the exact form of the transport 
equation (3.18) and Y in the relations (5.2) and (5.7) must be replaced by unity. 
Then equations (5.2), (5.4) and (5 .5)  express p ,  6, and u at a particle in terms 
of ??(a) and the temperature 8, at  that particle at the arrival of the pulse. 

It remains to determine t = T(a, Y )  and z = X ( a ,  Y ) .  It follows immediately 
from (3.19) and (5.2) that 

yqt - a) = - [Z(a, s)]-(y+1)/2y [Bo(s)]4s-lds, (5-8) s: 
and that, in particular, the arrival time of the pulse front a = 0 at Y is given by 

y4t = -Jly [8&)]t s-Ids. 

To obtain X ( a ,  Y )  the relation (4.28), with u given by (5.5) and !2 by 

is integrated subject to the initial data that 

(5.9) 

(5.10) 

(5.11) 
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The high-frequency conditions (2.27) are satisfied if the local frequency of the 

I ay-iU, t / u l  e,-~e; Y ~ ( Y + I ) I ~ Y  (5.12) 
pulse 

In  the absence of body force, the factor 8-l in (5.8)-(5.11) and the factor Y in 
(5.12) must be replaced by unity. Then the constant g, which is used in 5 3 to 
define a distance and time scale, can be chosen arbitrarily. Since all expressions 
are homogeneous in t and Y they are form invariant under a change of scale. 

According to (5.2), (5.4) and ( 5 . 5 ) ,  at any Y the local maxima and minima of 
p ,  19 and u occur at the same instant at the arrival of wavelets which carry local 
maxima or minima of i?. The amplitude of u at any such wavelet varies like 0,$ 
and the amplitude of 8 - 8, varies like 8%. 

6. Acceleration fronts 
In  § 4 it was stated that the pulse approximation which was described in 5 2 

always yields the exact variation of u, at any acceleration front, a = 0 say, 
which is moving into an undisturbed region where u = 0. This is easily seen by 
comparing the predictions of equations (2.16), (2.18) and (2.19), which are an 
exact restatement of equations (2.1), with the predictions of the pulse theory 
described by equations (2.21)-(2.25). Since at  the front U , x  = 0, (2.18) 
immediately implies that 

(6.1) 

for some scalar Fa(X) .  Differentiating the exact expression (2.16) with respect 
to a and using (6.1) to eliminate U , a then implies that Fa(X) satisfies the ordinary 
differential equation 

(6.2) 

U , a = pa(X)  r(O, X )  

where 

Since U , t  = Q-Wa) (6.4) 

it remains to determine the variation of Q on a = 0. This is supplied by equation 
(2.19) which, using (6.1)) implies that on a = 0 

dQ Ic(X) 
dX = A(X) Fa> 

where k / A  = r (O ,X) .w ," (O ,X) .  (6.6) 

Equations (6.1), (6.2), (6.5) and (6.4) govern the exact variation of u , ~  at any 
acceleration front. The variation of u , follows immediately from the fact that 

u,,+w(O,x)u,, = 0. (6.7) 

To see that the pulse theory also predicts the variations described by equa- 
tions (6.1)-(6.6) first note that at  the front (2.21) agrees with the exact expression 
(6.1) with 

(6.8) E ( X )  = F .(O,X). 
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In  addition, if the transport equation (2.24) is differentiated with respect to 01 
and if the expressions (2.25) and (2.23) are used to show that 

D, s(0, X )  = - k ( X ) ,  (6.9) 

it follows that the pulse theory also predicts that P,a satisfies (6.2). It remains 
to show that the value of T,a at the front which is predicted by pulse theory 
agrees with the exact value s2. To do this note that pulse theory approximates 

w(V, X )  , = W(P, X )  say, (6.10) 

and takes T, x = W(F, X ) .  (6.11) 

According to (6.11) at 01 = 0 

w(u,  X )  by 

(6.12) 

The result now follows from the fact that 

(6.13) w,,(O, X )  = W , ~ ( O ,  X).V,,  = r(0,X). W , ~ ( O ,  X )  = k/A. 

In  much the same way that it has been shown that pulse theory correctly 
predicts the variation in the first derivatives of u at a front, it can be shown that, 
more generally, it also predicts the variations of the first non-zero derivatives of 
u no matter what their order. 

Although a knowledge of conditions at an acceleration front in a stratified 
medium is of limited value, it is exact. Moreover, it introduces the basic length 
and acceleration scales which are important in the small amplitude region of 
a high frequency pulse. For these reasons, the predictions of the exact expres- 
sions (6.1)-(6.7) are briefly reviewed. 

The variation in F,(X), which is governed by (6.2)) introduces a local length 
scale Ik(X)I-l which is a measure of the local stratification of the medium. 
A small amplitude pulse is of high frequency at  X if some associated local wave- 
length is small compared with Ik(X)l-'. In  particular, when A in (2.1) is inde- 
pendent of x, k = 0 and any progressing pulse moving into a uniform region is 
of high frequency. 

To understand the significance of the local critical acceleration A ( X ) ,  defined 
by (6.3) and (6.6)) it is best to write down the equation for the acceleration 

- 

a ( X )  = f, t = Q-T, a (6.14) 

at the front. It follows from (6.2)) (6.5) and (6.14) that 

da = ( 1 - 5 )  ka. 
(6.15) 

Equations which are identical in form to (6.15) also govern the variation in 
strength along bi-characteristics of an acceleration front whose propagation is 
governed by quite general systems of quasi-linear hyperbolic equations in more 
than two independent variables (see Varley & Cumberbatch 1965). Equation 
(6,15) clearly shows the significance of A ( X ) :  la1 is increasing as the front passes 
X = Y if, when E( Y )  > 0 ( .c 0) ,  a( Y)/A(  Y )  < 1 ( > 1). 
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Since (6.15) can be replaced by a linear equation for u-l it can readily be 

a ( X )  = a(0) exp [l f u ( 0 )  N ( X ) ] - l ,  (6.16) 

integrated to give 

where (6.17) 

The exact expression (6.16) can be used to indicate when either the effects of 
non-linearily or stratification might be neglected. If equations (2.1) are formally 
linearized about u = 0, W, = 0 ( IA I = co) and a = a, satisfies 

2 = k ( X )  a,, (6.18) 

which integrates to give 

a, = a(0) exp [ IOx k ( s )  d ~ ]  . (6.19) 

When 20, + 0, equation (6.15) suggests that a, should be a good approximation 
to a, at least locally, when 

la,/A I < 1 (locally small accelerations). (6.20) 

Actually, condition (6.20) is not, by itself, sufficient to ensure that a, is a 
uniformly good approximation to a. The effect of locally small non-linearity 
may be cumulative. If 

B ( Y ) =  max I N ( x ) ~  (6.21) 

then, according to  (6.16) and (6.19), a,(X) is a uniformly good approximation to 
a ( X )  for 0 6 X 6 Y when the magnitude of the imposed acceleration 

O<X<Y 

Icc(0)l < global critical acceleration, 8-l 
(uniformly small acceleration limit). (6.22) 

In many situations 8( Y )  grows without bound with increasing Y so that non- 
linear effects cannot be neglected even when (6.20) holds. Then there are, in 
general, two possibilities : either 

a(0)  N(X,)  = - 1 (6.23) 

for some critical value X = X,, in which case C? -+ 0 and u/u(O) --f co as X -+ X,; or 
a(O)N(X) -+m as X - f c o ,  (6.24) 

in which case a+exp [ /oxk(s )ds] / iV(X)  as X-zco ,  (6.25) 

which is independent of the imposed acceleration a( 0). 
If there is no stratification, so that 

k = 0 and w, = constant, (6.26) 

then the pulse is a simple wave and a = a, satisfies 

duz/dX = - E ,  F(az)2 

which integrates to give 
(6.27) 

a,= a ( 0 ) [ 1 + a ( O ) ~ , , X ] - ?  (6.28) 
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Here, the variation in a is completely controlled by the non-linear response of 
the medium. This variation can only be neglected over distances from X = 0 
which are small compared with the shock distance Id\, where 

a = [a(O) Z , &1. (6.29) 

When lc and Z , F  vary with X ,  equation (6.15) suggests that 

a, = a(0) [ 1 +a(O) /0x3&]-1' (6.30) 

which satisfies (6.27) for varying G , p ,  should provide a good approximation 
to a when i 2 I 9 1 (locally large accelerations). (6.31) 

Such large amplitude acceleration fronts are produced at X = 0 when the shock 
distance 

]dl < I W - 1 .  (6.32) 

Conditions at such a front change significantly over distances from X = 0 which 
are small compared with llc(0)l-l but which are comparable with ldl. In  this 
layer, where 

lk(0)1-1 B x = O( Id] ), (6.33) 

as la(O)/A(O)f+co, a ( X )  is given to  all approximations by (6.30). To a first 
approximation it is given by (6.28). If the front is compressive (d < 0) ,  a/a(O) 
becomes unbounded, to a first approximation, when 

X = -d.  (6.34) 

If the front is expansive (d > 0) then at the outer edge of the layer (6.33), where 

p ( o ) p  9 x 9 d, (6.35) 

a+ (w ,FX) - l  as la(O)/A(O)I +a, (6.36) 

so that, to a first approximation, conditions a t  the front are already independent 
of a(0). More generally, when X B d, a ( X )  at an expansion front is given by (6.25). 
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